
February 12-14, 2005
SAND2005-0945C

SIAM 2005 CS&E Meeting Page 1

SAND2005-0945C

Uncertainty in Verification and Validation:
Recent Perspective

Tim Trucano

Optimization and Uncertainty Estimation, 09211
PO Box 5800, MS 0370

Sandia National Laboratories
Albuquerque, NM 87185-0370

tgtruca@sandia.gov

(505)844-8812

2005 SIAM Conference on Computational Science and 
Engineering, February 12-15, 2005, Orlando, Florida

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s National Nuclear Security Administration 

under contract DE-AC04-94AL85000.



February 12-14, 2005
SAND2005-0945C

SIAM 2005 CS&E Meeting Page 2

SAND2005-0945C“Is Your Calculation Probably Accurate?”

Timothy Trucano, William Oberkampf, Martin Pilch, and  Laura Swiler

The premise of this talk is that it is 
important to view accuracy in complex 
computational science as uncertain. We will 
explain this claim and present some ideas 
that support it. These ideas include (1) the 
challenges of experimental validation; (2) 
reliability of computational science 
software; and (3) the use of under resolved 
computation. We conclude by emphasizing 
the impact that uncertainty in 
computational error has on predictability 
and application of computational science.
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SAND2005-0945C

The purpose of computing is not insight. ☺

ASCI –

– The purpose of computing is to provide “high-
performance, full-system, high-fidelity-physics 
predictive codes to support weapon 
assessments, renewal process analyses, 
accident analyses, and certification.” (DOE/DP-
99-000010592)
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SAND2005-0945CVerification and Validation (V&V)

Verification – Are the equations solved correctly? (Math)
Validation – Are the equations correct? (Physics)

ASC:
– Verification: The process of confirming that a computer code correctly implements the 

algorithms that were intended.
– Validation: The process of confirming that the predictions of a code adequately 

represent measured physical phenomena.

AIAA:
– Verification: The process of determining that a model implementation accurately 

represents the developer’s conceptual description of the model and the solution to the 
model.

– Validation: The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model.

IEEE:
– Verification: (1) The process of evaluating a [software] system or component to 

determine whether the products of a given development phase satisfy the conditions 
imposed at the start of that phase. (2) Formal proof of program correctness.

– Validation: The process of evaluating a [software] system or component during or at the 
end of the development process to determine whether it satisfies specified 
requirements.
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SAND2005-0945C

This talk is about verification

• Verification centers on mathematical and computational 
accuracy.

• Validation, applications and decisions depend on 
verification.

• Are there reasons to believe that the accuracy of given 
calculations may have to be “understood”
probabilistically?

• Are there ideas that help?
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SAND2005-0945CConsider the following “validation” exercise:

This is math as well as physics.

Error “Calculation”
Verification

Software
Implementation

Algorithms

Mathematics

Correct?

Correct?

Correct?

“Code”
Verification
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• The calculations (diamonds) are 
not converged and I don’t know 
what the computational error is.

• What does the comparison 
mean?
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SAND2005-0945CUncertainty In verification arises from:

Software implementation errors – BUGS
– Code crashes are the least of our problems.
– Mutually reinforcing errors are also “easily”

detectable.
– Mutually canceling errors are of greater concern.

Inadequate algorithms and incorrect mathematics
– No amount of resolution will solve the problem.

Inadequate resolution
– Resolution “solves” the problem but is probably 

unavailable for the hardest applications.
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SAND2005-0945CPassage from determinism to uncertainty.

Deterministic: The error ≤ EDeterministic: The error ≤ E

Qualitative UQ: “I’m uncertain what 
the accuracy of this calculation is.”

Qualitative UQ: “I’m uncertain what 
the accuracy of this calculation is.”

• Formal methods       (will they 
work for CS&E?)

• Software engineering       (“we 
don’t like to do this”) 

• “Non-SQE” testing (classical 
verification)

• Deterministic error models (i.e. a 
posteriori error estimation)

• Probabilistic error models 

• Formal methods       (will they 
work for CS&E?)

• Software engineering       (“we 
don’t like to do this”) 

• “Non-SQE” testing (classical 
verification)

• Deterministic error models (i.e. a 
posteriori error estimation)

• Probabilistic error models 

Quantitative UQ leap: “I need to 
apply probabilistic language to 

describe my understanding of the 
accuracy of this calculation”

Quantitative UQ leap: “I need to 
apply probabilistic language to 

describe my understanding of the 
accuracy of this calculation”
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SAND2005-0945CIs Probabilistic Software Reliability (PSR) 
useful for computational science software?

• We are test fixated in building scientific software, properly 
so: 
“Based on the software developer and user surveys, the 
national annual costs of an inadequate infrastructure for 
software testing is estimated to range from $22.2 to $59.5 
billion.” (“The Economic Impacts of Inadequate 
Infrastructure for Software Testing,” NIST report, 2002.)

• Can we test software perfectly or can’t we?
• If we can’t test software perfectly testing alone does not 

solve the verification problem.
• Users are really important, but…
• Dumping lousy software on users and expecting them to 

find bugs and be happy about it because its 
“computational science” is not smart.
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SAND2005-0945CMy view of software “reliability” is correlation of 
decreasing # of “failures” and increasing # of “users”.

A notional view of “reliability” for a general-purpose PDE code (say hydrocode):

Development and test Capability I Capability II Capability etc
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SAND2005-0945CWhat is probabilistic in software reliability and 
what isn’t?

Software reliability is “the probability of failure-free 
operation of a computer program in a specified 
environment for a specified period of time.”

• Probability here is interpreted as the probability of 
detection, not probability of existence.

• Major complexity arises from accounting for software 
modification.
– One assumption made is that new bugs are not 

introduced repairing old ones.
– One reason why regression testing is performed.

WHAT IS A FAILURE?!
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SAND2005-0945C

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M1

Software 
Module M

Is probability here a frequency?

One interpretation of software reliability might look 
like the following:

Software 
Module M

“Equivalent Modules”

- “Same” language

- “Same” length

- “Same” complexity

- “Same” usage

“Failure” in time T?

Yes = 1

No = 0

Software 
Module M1

Software 
Module M1

MN Fail?

This is highly unlikely to be a useful model?

M1 Fail?

( )1  NP M + ∼ # of failureshas failure
# of modules
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SAND2005-0945CAnother view: given a software system

Quantities of interest:

1

( )

i
i

i i i
j

N t
X

T T X
=

=
=

= =∑

# of failures in [0,t]
time between failures i -1 and i

time to failure i; 

N(t) is treated as a stochastic process.
Canonical questions include:

– Model the number of failures up to a given time.
Poisson processes

– Model the times between successive failures.
Auto-regressive processes
Failure rate is controversial (read the references)
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N. D. Singpurwalla and S. P. Wilson (1999), Statistical Methods in 
Software Engineering, Springer-Verlag (Bayesian approach).
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SAND2005-0945C
Example: (Musa and Okumoto)

Note that Λ*(t) (“mean value function) is the expected value of N(t).
The derivative of Λ*(t), λ*(t), if it exists is failure rate at time t. Assume

Then, 

This leads to

• Estimating parameters in this model is subtle. Standard maximum 
likelihood estimation is not recommended.

• See Singpurwalla and Wilson for tons more examples.
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SAND2005-0945CStatistical testing is of great interest

• G. M. Kaufman (1996), “Successive Sampling and Software Reliability,” J. 
Statistical Planning and Inference, Vol. 49, 343-369.

– How many faults remain in a software system at a given time with a given 
history of fault detection?

– What is the waiting time to the next failure?
• T. L. Graves, et al. (2001), “An Empirical Study of Regression Test Selection 

Techniques,” ACM Trans. Software Engineering and Methodology, Vol. 10, No. 
2, 184-208.  

– Contrasts the effectiveness of random test designs for regression testing 
(random walks on a graph) with other methods.

– Note that this involves how to correlate this test design (called synthetic 
testing) with the estimated operational profile of the software (operational 
testing); this should involve careful characterization of “users”.

• B. Littlewood and D. Wright (1997), “Some Conservative Stopping Rules for 
the Operational Testing of Safety-Critical Software,” IEEE Trans. Software 
Engineering, Vol. 23, No. 11, 673-683.  

– How to modify testing after N tests if M faults have been detected (related 
to weighted sampling without substitution).

– How to stop testing after P testing cycles (requires a probabilistic 
reliability statement that is passes acceptance criteria).
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SAND2005-0945CUsing a reliability approach for verification 
to make application decisions – example:

Define Tests 1, …, N;
Define “FAILURE”;
Stopping criteria as in Littlewood and Wright

Pass? Perform application
Fail? Continue testing

Define Tests 1, …, N;
Define “FAILURE”;
Stopping criteria as in Littlewood and Wright

Pass? Perform application
Fail? Continue testing

• Developing stopping rules is 
one of the areas of interest: 

HOW MUCH VERIFICATION IS 
ENOUGH?

• We are interested in detecting 
“FAILURES” over a high-
dimensional space (e.g. space 
of all input parameters for the 
code).

• Can the stochastic reliability 
framework be extended to 
spatial processes?

Verification 
Tests

Validation 
Tests

Stockpile 
Applications

Verification 
Tests

Validation 
Tests

Stockpile 
Applications

Code Verification

Application Domain (N 
Dimensional Parameter Space)
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SAND2005-0945CAre Probabilistic Error Models (PEM) useful 
for computational science software?

• Suppose we face up to uncertainty in the process and 
results of verification.
– “When quantifying uncertainty, one cannot make errors small 

and then neglect them, as is the goal of classical numerical 
analysis; rather we must of necessity study and model these 
errors.”

– “…most simulations of key problems will continue to be under 
resolved, and consequently useful models of solution errors 
must be applicable in such circumstances.”

– “…an uncertain input parameter will lead not only to an 
uncertain solution but to an uncertain solution error as well.”

• These quotes reflect a new view of “numerical error”
expressed in B. DeVolder, J. Glimm, et al. (2001), 
“Uncertainty Quantification for Multiscale Simulations,” Los 
Alamos National Laboratory, LAUR-01-4022.
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SAND2005-0945CEmpirical, sampling-based investigation of 
numerical error is studied.

• The goal is to understand structural features of probabilistic error 
models in the particular case of conservation law solution.

• This requires a fiducial.
– In the case of verification test problems, this fiducial is exactly 

known for analytic tests.
– In the absence of analytic solutions, fine grid solutions serve 

as the fiducial instead.
• A verification metric is required to define error as the difference 

between a calculation and the fiducial.
• Sources of uncertainty in the numerical simulation are given pdf’s

and sampled, creating an ensemble from which an (empirical) 
distribution for the error is created (a empirical random field).

CAN THE RESULTING ERROR CHARACTERIZATION BE USED TO 
PREDICT? 
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SAND2005-0945C
Error Uncertainty:  Shock Tube Verification 
Problem

log(ρ) error[log(ρ)]
Material #1 Material #2

mean error in contact x
empirical histogram of error 
in shock arrival time at wall

• The problem is a simple 
shock problem involving 
shock transmission and 
reflection from a contact 
discontinuity, with analytic 
solution.

• Key features are various 
error space-time 
trajectories and 
dependency on resolution.

• This is pretty interesting 
and pretty unusual.

– Generalize to entire suite 
of test problems? Means 
what?

– Way of looking at errors in 
reduced-order models?

– Etc
I’ll revisit from validation perspective.
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SAND2005-0945CHunch: Multi-scale models are likely 
candidates for PEM.

• Multi-scale models are by definition under-resolved.
– Multi-scale modeling implies subgrid information which 

is often canonically treated by probabilistic techniques, 
so the resulting error already has an explicit 
probabilistic component.

• What is the effect of upscaling and downscaling 
requirements in multi-scale?

• Should we solve stochastic differential equation 
approximations to model multi-scale PEM?

• Current practice is to hope the subgrid “error” and micro-
scale/macro-scale inconsistencies don’t blow up in our 
face.

• I really don’t have a clue how to “verify” such calculations 
with classical concepts.
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SAND2005-0945CConclusions and Questions

CONCLUSIONS:
• We have uncertainty in the numerical accuracy of our 

most important calculations (verification) as well as the 
physical accuracy (validation).

• Verification uncertainty is a proper component of 
uncertainty quantification in computational science.

QUESTIONS:
– Can probabilistic software reliability be extended to 

include “failures” typical of CSE (algorithm 
performance; resolution)

– Can CSE acceptance criteria be devised based on 
statistical software reliability ideas?

– How can we most usefully extend the concept of PEM 
(verification test suites; validation test suites; error 
prediction; how to calculate)?

– How does a probabilistic interpretation of our 
understanding of numerical errors influence decisions 
that rely upon numerical models?
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SAND2005-0945C“An Uncertain Foundation for Validation”

Timothy Trucano, William Oberkampf, Martin Pilch and Laura Swiler

Validation targets the external logic of computational 
modeling, that is, quantification of the degree that 
modeling is in agreement with the physical world. 
(Verification targets internal logic, the foundation 
and measurement of accuracy of computational 
solutions.) Validation depends upon comparison of 
computations with physical observations. This 
comparison process fundamentally introduces 
uncertainty into the foundations of validation, which 
guides the methodology and constrains the 
conclusions. This talk briefly discusses some 
important elements of this problem.
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SAND2005-0945CThis talk is about validation.

• Validation centers on physical accuracy, and is of special 
concern in predictive, high-consequence application 
domains.

• Uncertainty is prominent in validation.
• Are there ideas that help?

This is physics as well as math.
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• Assume calculations 
(diamonds) are converged 
(sufficiently accurate); say the 
error bar is the size of the 
symbol.

• What does the comparison 
mean?
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SAND2005-0945CSummary of the Sandia program methodology 
for experimental validation:
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Application
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PlanningPlanning
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& Analysis
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MetricsMetrics

AssessmentAssessment

Prediction 
& Credibility
Prediction 
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DocumentDocument
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Verification
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Verification
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planning

Verification Validation 
Metrics
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Permanence

Validation 
Experiments
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SAND2005-0945CElement 2: Planning is an 
essential component of 
experimental validation.

The PIRT directly defines the progression and expected 
connection of validation activities and reflects expected impact.

Code
Verification

Code
Verification

DP
Application

DP
Application

PlanningPlanning
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Design, Execution
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Validation Physical Complexity
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• Reflects the complexity 
of the defining 
application (and the 
application needs to be 
the “right size”)

• Avoids ad hoc 
experimental activities

• Maximizes impact of 
experiments on 
validation

• Defining application can 
be non-trivial (i.e. social 
models)
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SAND2005-0945CPIRT – Phenomenology Identification and 
Ranking Table – Prioritizes the work.

Experiment 
Analysis

Experiment 
Design

PIRT Element
Importance

AdequacyAdequacy

Importance

• PIRTs are related to quality function deployment.
• PIRTs decompose and map the application to the M&S 

structure.
• PIRTs are built on ranking scales (typically 1-4); ranking 

depends on current knowledge.
• Gaps prioritize V&V work.
• PIRTs are most effective by achieving a balance between 

narrow and broad. 
• PIRTs change based on new knowledge.

• It’s a grocery list! Not a maximization of expected 
collective utility.
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Rough Information Flow:

PIRTPIRT

Prioritized
Validation

Tasks

Prioritized
Validation

Tasks

Supporting
Verification

Work

Supporting
Verification

Work
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SAND2005-0945C
Example of a PIRT.

Table 15. PIRT for Thermal Load on Weapon (Hydrocarbon Fire) 

Import Adequacy Phenomena 
Phen Mod Code Val Mats 

Radiation Processes      
Radiation heat transfer to weapon (participating media macroscale transport) H H H L  

Emission: mesoscale (~1cm) turbulent mixing (affecting flame area) H M L L  
Emissive flux: combustion chemistry (affects soot temperature) H M L L  
Emissive flux: fine scale turbulent strain (~1mm) (affects soot temperature) U L L L  
Emissive flux: soot diffusive transport (affects soot mass fraction and soot 
temperature) 

H L L L  

Emissive flux: soot formation chemistry (affects soot mass fraction) H M L L  
Emissive flux: soot oxidation chemistry (affects soot mass fraction) H M L L  
Emissive flux: gas emission L M L L  

Emission: Spectral dependence L M L L  
Absorption: mesoscale source term M H L L  
Scattering: mesoscale source term L H L L  

Convective Processes      
Convective heat transfer to the weapon M M M L  
Transport Processes      
Large scale turbulent mixing affecting flame geometry and radiation view factors H M M L  
Fuel vaporization from surface of spilled fuel M M L L  
Couplings      
Effect of weapon on fire (CALORE to FUEGO) M M L L  
Material Properties      
Soot optical properties (extinction coefficient) H    M 
 

Gap analysis represented by the color coding.
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SAND2005-0945CElement 3: Verification and 
validation are coupled.

Validation 
ExperimentsCode 

Verification

DEFINEDEFINE
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SAND2005-0945C
Dedicated validation experiments.
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SAND2005-0945C
Element 4: Dedicated 
validation experiments must 
be designed rationally.

• Validation experiments should be planned.
• The anticipated use of their outcomes 

should be planned.
• The subject code should be engaged in the 

definition and design of the experiments, 
not only in the analysis of their outcomes.

• And yes, we did suggest the possibility of 
using statistical design of experiments.

• The rational design of validation 
experiments emphasizes the 
multidisciplinary team that should be 
engaged on experimental validation.
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SAND2005-0945COne reason for rational experimental 
design is to determine boundaries with 
some accuracy.
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Some understanding of the boundary of applicability is 
needed for decisively predictive calculations.
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SAND2005-0945CElement 5: Metrics define how 
we compare calculations with 
experimental data.

• Quantitative
• Focus on differences that include 

both experimental and computational 
uncertainty.

• Understanding (not confusion) in the 
use of the code for the defined 
application should either increase or 
decrease as a result of these metrics.

• In an ideal world, success/failure 
criteria associated with these metrics 
will be defined prior to application of 
the metrics. The world is not ideal.

• See Trucano, et al (2001), “Description 
of the Sandia Validation Metrics 
Project,” SAND2001-1339.
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SAND2005-0945CViewgraph norms are not validation metrics

• Possibly useful for science, these are useless, if not 
dangerous, for validation.

• Uncertainty must be quantified in validation.
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SAND2005-0945CElement 6: Assessment

Assessment could be coupled to the 
definition of validation metrics – isolating it as 
a separate element emphasizes it is hard.

• Quantification enables assessment!
• Was the comparison GOOD? (“Success”) 

BAD? (“Failure”)
• Why? And how will this information be used 

for future improvement of experiments and 
calculations?
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SAND2005-0945CUncertainty analysis and quantitative 
validation metrics move us from “looks pretty 
good” to “something is wrong” …

Comparison of calculations 
and experimental data look 
good here.
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Statistical analysis of 
the differences shows 
errors are too large.

Hills and Trucano (2001), “Statistical 
Validation of Engineering and 
Scientific Models with Application to 
CTH,” SAND report.
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SAND2005-0945CExploring the probabilistic overlap between the 
computational model and the experimental data.

Brian M. Rutherford, Kevin J. Dowding, “Model Validation and Model-
Based Prediction Polyurethane Foam Case Study,” Sandia, SAND2003-
2336. (Decomposition front velocity as a function of forcing temperature 
in an organic foam.)

Raw overlap of computational and 
experimental variability. The 
difference is interpreted as a random 
process.

Stochastic modeling of model-experiment 
difference process, based on response surfaces. 
Outlined region is extrapolation and is 
particularly sensitive to response surface form.
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SAND2005-0945CElement 7: Understanding predictive 
credibility of the code for the defined 
application is the real goal. Code
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Don’t ask the question if you won’t like the answer.
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SAND2005-0945C
Assessing predictive 
credibility is not simple.

• Assessing whether a calculation “agrees” with 
experimental data to some degree of success is a 
local inference.

• Understanding what this assessment means in 
terms of the intended application of the code is a 
global inference.

• All validation tasks associated with a specified 
application of a code point at this goal.

• The question is simple, but hard to answer:
– “What does the result of the validation task – in 

particular the metric comparisons and their 
assessment – tell me about using the code?”

– If a conclusion can not be drawn, even “I don’t 
know for the following reasons…”, then doubt is 
cast on the value of the validation task.
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SAND2005-0945CQuantitative metrics actually help …
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• Ideally, the “zero line”

should pass through 
the +/- 2σ error bars.

• Not true here (from 
statistical analysis); 
therefore, we conclude 
that model has a bias.

• Practically, we can say 
with high confidence 
that the predictions fall 
within customer 
supplied acceptance 
range.
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SAND2005-0945CValidation is not calibration.

• Calibration: Improve the agreement of codes with defined 
benchmarks (verification or validation, for example) 
through  improved choices of input parameters.
– Example: adjusting the mesh to achieve better 

agreement with experimental data is calibration.
• Calibration in the face of model uncertainty is a very 

interesting problem.
– V&V highlights and quantifies model uncertainty. 
– Does incorporating model uncertainty improve 

predictability?
• One perspective is the Bayesian interpretation of model 

“improvement” through new information generated by V&V.
• Another perspective is application of Bayesian methods in 

optimization under uncertainty (optimization using 
imperfect codes).
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SAND2005-0945CCalibration Under Uncertainty

• Laura Swiler and I are working on this, with an emphasis 
on optimization and the connection to V&V.

• Also a hot topic at LANL.
• Starting point is: M. C. Kennedy and A. O’Hagan (2002), 

“Bayesian Calibration of Computer Models,” (with 
discussion), Journal of the Royal Statistical Society 
(Series B), Vol. 58, 425-464.

• The key starting point is to transform a relationship of the 
form:

Observation(x) ~ Code(x,p) + Error(x)
(where Error is a random process characterizing 
observation error)
to one of the form:
Observation(x) ~ Code(x,p) + Discrepancy(x) + Error(x)

and calibrate this.
• V&V help constrain, if not quantify, the discrepancy
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SAND2005-0945CExample:

Returning to Rutherford and Dowding: they use a form of 
model discrepancy in their development of the stocahstic
model for the validation metric that I showed on slide 37.

Code Discrepancy Error
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SAND2005-0945CChallenges:

• We can define necessary conditions for validation; but what are 
sufficient conditions?

• Sufficiency in one respect is a expected utility maximization 
problem. Do Arrow-like impossibility theorems make this task 
hopeless?

• From a more general multi-objective OUU perspective, 
validation sufficiency may be more of a “satisficing” problem –
“good enough” may be far removed from rigid notions of 
computational and physical fidelity.
– Use of reduced-order models in national security problems 

is one example.
– Social modeling is another.

• Validation is currently a matter of judgment. Why not embrace 
this?
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SAND2005-0945CBrunswik LENS Model

Observed 
Event (Expt)

“Cues”

Forecast

• Forget causality, everything is correlation.
• Methods for assessing forecast skill.

– Implies “sufficient validation” means 
“sufficient skill”?

• R. Cooksey, Judgment Analysis, Academic 
Press, 1996.
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